Thursday, April 20, 2017

Review article: the fly as "powerful system for the study of human genetic disease"

Chow CY, Reiter LT. Etiology of Human Genetic Disease on the Fly. Trends Genet. 2017 Apr 15. pii: S0168-9525(17)30051-3. PMID: 28420493.

Abstract: "The model organism Drosophila melanogaster has been at the forefront of genetic studies since before the discovery of DNA. Although human disease modeling in flies may still be rather novel, recent advances in genetic tool design and genome sequencing now confer huge advantages in the fly system when modeling human disease. In this review, we focus on new genomic tools for human gene variant analysis; new uses for the Drosophila Genetic Reference Panel (DGRP) in detection of background alleles that influence a phenotype; and several examples of how multigenic conditions, both complex disorders and duplication and/or deletion syndromes, can be effectively studied in the fly model system. Fruit flies are a far cry from the quaint genetic model of the past, but rather, continue to evolve as a powerful system for the study of human genetic disease."

Monday, April 10, 2017

Drosophila genetic screen identifies new candidate Alzheimer's-related genes

Belfiori-Carrasco LF, Marcora MS, Bocai NI, Ceriani MF, Morelli L, Castaño EM. A Novel Genetic Screen Identifies Modifiers of Age-Dependent Amyloid β Toxicity in the Drosophila Brain. Front Aging Neurosci. 2017 Mar 14;9:61. PMID: 28352227; PMCID: PMC5349081.

From the abstract: "The accumulation of amyloid β peptide (Aβ) in the brain of Alzheimer's disease (AD) patients begins many years before clinical onset. Such process has been proposed to be pathogenic through the toxicity of Aβ soluble oligomers leading to synaptic dysfunction, phospho-tau aggregation and neuronal loss. Yet, a massive accumulation of Aβ can be found in approximately 30% of aged individuals with preserved cognitive function. Therefore, within the frame of the "amyloid hypothesis", compensatory mechanisms and/or additional neurotoxic or protective factors need to be considered and investigated. Here we describe a modifier genetic screen in Drosophila designed to identify genes that modulate toxicity of Aβ42 in the CNS. ... Our screen is the first to take into account all of the following features, relevant to sporadic AD: (1) pan-neuronal expression of wild-type Aβ42; (2) a quantifiable complex behavior; (3) Aβ neurotoxicity associated with progressive accumulation of the peptide; and (4) improvement or worsening of climbing ability only evident in aged animals. One hundred and ninety-nine deficiency (Df) lines accounting for ~6300 genes were analyzed. ... So far, we have validated CG11796 and identified CG17249 as a strong candidate (whose human orthologs are HPD and PRCC, respectively) by using RNAi or mutant hemizygous lines. ... These previously undetected modifiers of Aβ42 neurotoxicity in Drosophila warrant further study to validate their possible role and significance in the pathogenesis of sporadic AD."

Thursday, April 6, 2017

Parallel studies in human induced pluripotent stem cells and Drosophila identify a potential new target for development of possible therapies for Parkinson's Disease

Zanon A, Kalvakuri S, Rakovic A, Foco L, Guida M, Schwienbacher C, Serafin A, Rudolph F, Trilck M, Grünewald A, Stanslowsky N, Wegner F, Giorgio V, Lavdas AA, Bodmer R, Pramstaller PP, Klein C, Hicks AA, Pichler I, Seibler P. SLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila. Hum Mol Genet. 2017 Apr 3. PMID: 28379402.

From the abstract: "Mutations in the Parkin gene (PARK2) have been linked to a recessive form of Parkinson's disease (PD) characterized by the loss of dopaminergic neurons in the substantia nigra. Deficiencies of mitochondrial respiratory chain complex I activity have been observed in the substantia nigra of PD patients, and loss of Parkin results in the reduction of complex I activity shown in various cell and animal models. Using co-immunoprecipitation and proximity ligation assays on endogenous proteins, we demonstrate that Parkin interacts with mitochondrial Stomatin-like protein 2 (SLP-2), which also binds the mitochondrial lipid cardiolipin and functions in the assembly of respiratory chain proteins. ... In-vivo Drosophila studies showed a genetic interaction of Parkin and SLP-2, and further, tissue-specific or global overexpression of SLP-2 transgenes rescued parkin mutant phenotypes ... The physical and genetic interaction between Parkin and SLP-2 and the compensatory potential of SLP-2 suggest a functional epistatic relationship to Parkin and a protective role of SLP-2 in neurons. This finding places further emphasis on the significance of Parkin for the maintenance of mitochondrial function in neurons and provides a novel target for therapeutic strategies."