Wednesday, December 4, 2019

New fly models of Spinocerebellar ataxia type 31

Ishikawa K, Nagai Y. Molecular Mechanisms and Future Therapeutics for Spinocerebellar Ataxia Type 31 (SCA31). Neurotherapeutics. 2019 Nov 21. PubMed PMID: 31755042.

From the abstract: "Spinocerebellar ataxia type 31 (SCA31) is one of the autosomal-dominant neurodegenerative disorders that shows progressive cerebellar ataxia as a cardinal symptom. This disease is caused by a 2.5- to 3.8-kb-long complex pentanucleotide repeat containing (TGGAA)n, (TAGAA)n, (TAAAA)n, and (TAAAATAGAA)n in an intron of the gene called BEAN1 (brain expressed, associated with Nedd4). ... To dissect the pathogenesis of (UGGAA)n in SCA31, we generated transgenic fly models of SCA31 by overexpressing SCA31 complex pentanucleotide repeats in Drosophila. We found that the toxicity of (UGGAA)n is length- and expression level-dependent, and it was dampened by co-expressing TDP-43, FUS, and hnRNP A2/B1. ..."

Cross-species studies explores mechanisms underlying premature again in Werner syndrome

Fang EF, Hou Y, Lautrup S, Jensen MB, Yang B, SenGupta T, Caponio D, Khezri R, Demarest TG, Aman Y, Figueroa D, Morevati M, Lee HJ, Kato H, Kassahun H, Lee JH, Filippelli D, Okur MN, Mangerich A, Croteau DL, Maezawa Y, Lyssiotis CA, Tao J, Yokote K, Rusten TE, Mattson MP, Jasper H, Nilsen H, Bohr VA. NAD(+) augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nat Commun. 2019 Nov 21;10(1):5284. PubMed PMID: 31754102; PubMed Central PMCID: PMC6872719.

Abstract: "Metabolic dysfunction is a primary feature of Werner syndrome (WS), a human premature aging disease caused by mutations in the gene encoding the Werner (WRN) DNA helicase. WS patients exhibit severe metabolic phenotypes ... Here we report impaired mitophagy and depletion of ... At the organismal level, NAD+ repletion remarkably extends lifespan and delays accelerated aging, including stem cell dysfunction, in Caenorhabditis elegans and Drosophila melanogaster models of WS. Our findings suggest that accelerated aging in WS is mediated by impaired mitochondrial function and mitophagy, and that bolstering cellular NAD+ levels counteracts WS phenotypes."

Drosophila studies point to potential relevance of voltage-gated sodium channels in cell proliferation and cancer

Piggott BJ, Peters CJ, He Y, Huang X, Younger S, Jan LY, Jan YN. Paralytic, the Drosophila voltage-gated sodium channel, regulates proliferation of neural progenitors. Genes Dev. 2019 Dec 1;33(23-24):1739-1750. PubMed PMID: 31753914.

From the abstract: "... voltage-gated sodium channels (VGSC) that are crucial for neuronal excitability are also found in progenitors and up-regulated in cancer. Here, we identify a role for VGSC in proliferation of Drosophila neuroblast (NB) lineages within the central nervous system. Loss of paralytic (para), the sole gene that encodes Drosophila VGSC, reduces neuroblast progeny cell number. ... Our data suggests that loss of Para induces apoptosis in this population, whereas overexpression leads to an increase in INPs and overall neuroblast progeny cell numbers. These effects are cell autonomous and depend on Para channel activity. Reduction of Para expression not only affects normal NB development, but also strongly suppresses brain tumor mass, implicating a role for Para in cancer progression. To our knowledge, our studies are the first to identify a role for VGSC in neural progenitor proliferation. Elucidating the contribution of VGSC in proliferation will advance our understanding of bioelectric signaling within development and disease states."

Studies in Drosophila point to potential therapeutic approach for treatment of Parkinson's Disease based on modulation of kynurenine metabolism

Cunningham PC, Waldeck K, Ganetzky B, Babcock DT. Neurodegeneration and locomotor dysfunction in Drosophila scarlet mutants. J Cell Sci. 2018 Sep 17;131(18). pii: jcs216697. doi: 10.1242/jcs.216697. PubMed PMID: 30154211; PubMed Central PMCID: PMC6176922.

From the abstract: "Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons, resulting in progressive locomotor dysfunction. Identification of genes required for the maintenance of these neurons should help to identify potential therapeutic targets. ... Here, we show that Drosophila melanogaster scarlet mutants exhibit an age-dependent progressive loss of dopaminergic neurons, along with subsequent locomotor defects and a shortened lifespan. ... we show that expression of wild-type Scarlet is neuroprotective in a model of PD, suggesting that manipulating kynurenine metabolism may be a potential therapeutic option in treating PD."

Flies used to explore potential health impacts of a food additive

Jovanović B, Jovanović N, Cvetković VJ, Matić S, Stanić S, Whitley EM, Mitrović TL. The effects of a human food additive, titanium dioxide nanoparticles E171, on Drosophila melanogaster - a 20 generation dietary exposure experiment. Sci Rep. 2018 Dec 18;8(1):17922. PubMed PMID: 30560898; PubMed Central PMCID: PMC6298969.

Abstract: "In this study, fruit flies (Drosophila melanogaster) were exposed to an estimated daily human E171 consumption concentration for 20 generations. Exposure to E171 resulted in: a change in normal developmental and reproductive dynamics, reduced fecundity after repetitive breeding, increased genotoxicity, the appearance of aberrant phenotypes and morphologic changes to the adult fat body. Marks of adaptive evolution and directional selection were also exhibited. The larval stages were at a higher risk of sustaining damage from E171 as they had a slower elimination rate of TiO2 compared to the adults. This is particularly worrisome, since among the human population, children tend to consume higher daily concentrations of E171 than do adults. The genotoxic effect of E171 was statistically higher in each subsequent generation compared to the previous one. Aberrant phenotypes were likely caused by developmental defects induced by E171, and were not mutations, since the phenotypic features were not transferred to any progeny even after 5 generations of consecutive crossbreeding. Therefore, exposure to E171 during the early developmental period carries a higher risk of toxicity. The fact that the daily human consumption concentration of E171 interferes with and influences fruit fly physiological, ontogenetic, genotoxic, and adaptive processes certainly raises safety concerns."

Fly studies help provide insights into molecular mechanisms related to Charcot-Marie-Tooth and related disorders

Suda K, Muraoka Y, Ortega-Yáñez A, Yoshida H, Kizu F, Hochin T, Kimura H, Yamaguchi M. Reduction of Rpd3 suppresses defects in locomotive ability and neuronal morphology induced by the knockdown of Drosophila SLC25A46 via an epigenetic pathway. Exp Cell Res. 2019 Dec 15;385(2):111673. PubMed PMID: 31614134.

Abstract: "Mitochondrial dysfunction causes various diseases. Mutations in the SLC25A46 gene have been identified in mitochondrial diseases that are sometimes classified as Charcot-Marie-Tooth disease type 2, optic atrophy, and Leigh syndrome. A homolog of SLC25A46 was identified in Drosophila and designated as dSLC25A46 (CG5755). We previously established mitochondrial disease model targeting of dSLC25A46, which causes locomotive dysfunction and morphological defects at neuromuscular junctions, such as reduced synaptic branch lengths and decreased numbers of boutons. The diverse symptoms of mitochondrial diseases carrying mutations in SLC25A46 may be associated with the dysregulation of some epigenetic regulators. To investigate the involvement of epigenetic regulators in mitochondrial diseases, we examined candidate epigenetic regulators that interact with human SLC25A46 by searching Gene Expression Omnibus (GEO). We discovered that HDAC1 binds to several SLC25A46 genomic regions in human cultured CD4 (+) cells, and attempted to prove this in an in vivo Drosophila model. By demonstrating that Rpd3, Drosophila HDAC1, regulates the histone H4K8 acetylation state in dSLC25A46 genomic regions, we confirmed that Rpd3 is a novel epigenetic regulator modifying the phenotypes observed with the mitochondrial disease model targeting of dSLC25A46. The functional reduction of Rpd3 rescued the deficient locomotive ability and aberrant morphology of motoneurons at presynaptic terminals induced by the dSLC25A46 knockdown. The present results suggest that the inhibition of HDAC1 suppresses the pathogenic processes that lead to the degeneration of motoneurons in mitochondrial diseases."

Cross-species study helps provide insight on the human gene IQSEC1, variants in which are associated with developmental disease

Ansar M, Chung HL, Al-Otaibi A, Elagabani MN, Ravenscroft TA, Paracha SA, Scholz R, Abdel Magid T, Sarwar MT, Shah SF, Qaisar AA, Makrythanasis P, Marcogliese PC, Kamsteeg EJ, Falconnet E, Ranza E, Santoni FA, Aldhalaan H, Al-Asmari A, Faqeih EA, Ahmed J, Kornau HC, Bellen HJ, Antonarakis SE. Bi-allelic Variants in IQSEC1 Cause Intellectual Disability, Developmental Delay, and Short Stature. Am J Hum Genet. 2019 Nov 7;105(5):907-920. PubMed PMID: 31607425; PubMed Central PMCID: PMC6848997.

From the abstract: "We report two consanguineous families with probands that exhibit intellectual disability, developmental delay, short stature, aphasia, and hypotonia in which homozygous non-synonymous variants were identified in IQSEC1 (GenBank: NM_001134382.3). ... IQSEC1-3 encode guanine nucleotide exchange factors for the small GTPase ARF6 and their loss affects a variety of actin-dependent cellular processes, including AMPA receptor trafficking at synapses. The ortholog of IQSECs in the fly is schizo and its loss affects growth cone guidance at the midline in the CNS, also an actin-dependent process. Overexpression of the reference IQSEC1 cDNA in wild-type flies is lethal, but overexpression of the two variant IQSEC1 cDNAs did not affect viability. Loss of schizo caused embryonic lethality that could be rescued to 2nd instar larvae by moderate expression of the human reference cDNA. However, the p.Arg321Gln and p.Thr343Met variants failed to rescue embryonic lethality. These data indicate that the variants behave as loss-of-function mutations. We also show that schizo in photoreceptors is required for phototransduction. Finally, mice with a conditional Iqsec1 deletion in cortical neurons exhibited an increased density of dendritic spines with an immature morphology. The phenotypic similarity of the affecteds and the functional experiments in flies and mice indicate that IQSEC1 variants are the cause of a recessive disease with intellectual disability, developmental delay, and short stature, and that axonal guidance and dendritic projection defects as well as dendritic spine dysgenesis may underlie disease pathogenesis."

Variant forms of human MYH9 introduced into flies as part of study related to understanding muscle-related diseases

Kasza KE, Supriyatno S, Zallen JA. Cellular defects resulting from disease-related myosin II mutations in Drosophila. Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22205-22211. doi: 10.1073/pnas.1909227116. Epub 2019 Oct 15. PubMed PMID: 31615886; PubMed Central PMCID: PMC6825282.

Abstract: "The nonmuscle myosin II motor protein produces forces that are essential to driving the cell movements and cell shape changes that generate tissue structure. Mutations in myosin II that are associated with human diseases are predicted to disrupt critical aspects of myosin function, but the mechanisms that translate altered myosin activity into specific changes in tissue organization and physiology are not well understood. Here we use the Drosophila embryo to model human disease mutations that affect myosin motor activity. Using in vivo imaging and biophysical analysis, we show that engineering human MYH9-related disease mutations into Drosophila myosin II produces motors with altered organization and dynamics that fail to drive rapid cell movements, resulting in defects in epithelial morphogenesis. In embryos that express the Drosophila myosin motor variants R707C or N98K and have reduced levels of wild-type myosin, myosin motors are correctly planar polarized and generate anisotropic contractile tension in the tissue. However, expression of these motor variants is associated with a cellular-scale reduction in the speed of cell intercalation, resulting in a failure to promote full elongation of the body axis. In addition, these myosin motor variants display slowed turnover and aberrant aggregation at the cell cortex, indicating that mutations in the motor domain influence mesoscale properties of myosin organization and dynamics. These results demonstrate that disease-associated mutations in the myosin II motor domain disrupt specific aspects of myosin localization and activity during cell intercalation, linking molecular changes in myosin activity to defects in tissue morphogenesis."

Disruption of MARK3 ortholog in flies helps establish "a new gene-disease link" related to visual impairment

Ansar M, Chung H, Waryah YM, Makrythanasis P, Falconnet E, Rao AR, Guipponi M Narsani AK, Fingerhut R, Santoni FA, Ranza E, Waryah AM, Bellen HJ, Antonarakis SE. Visual impairment and progressive phthisis bulbi caused by recessive pathogenic variant in MARK3. Hum Mol Genet. 2018 Aug 1;27(15):2703-2711. PubMed PMID: 29771303; PubMed Central PMCID: PMC6048992.

Abstract: "Developmental eye defects often severely reduce vision. Despite extensive efforts, for a substantial fraction of these cases the molecular causes are unknown. Recessive eye disorders are frequent in consanguineous populations and such large families with multiple affected individuals provide an opportunity to identify recessive causative genes. We studied a Pakistani consanguineous family with three affected individuals with congenital vision loss and progressive eye degeneration. The family was analyzed by exome sequencing of one affected individual and genotyping of all family members. We have identified a non-synonymous homozygous variant (NM_001128918.2: c.1708C > G: p.Arg570Gly) in the MARK3 gene as the likely cause of the phenotype. Given that MARK3 is highly conserved in flies (I: 55%; S: 67%) we knocked down the MARK3 homologue, par-1, in the eye during development. This leads to a significant reduction in eye size, a severe loss of photoreceptors and loss of vision based on electroretinogram (ERG) recordings. Expression of the par-1 p.Arg792Gly mutation (equivalent to the MARK3 variant found in patients) in developing fly eyes also induces loss of eye tissue and reduces the ERG signals. The data in flies and human indicate that the MARK3 variant corresponds to a loss of function. We conclude that the identified mutation in MARK3 establishes a new gene-disease link, since it likely causes structural abnormalities during eye development and visual impairment in humans, and that the function of MARK3/par-1 is evolutionarily conserved in eye development."

PubMedCentral: Fly model used in studies related to ALS and FTLD

Wang P, Deng J, Dong J, Liu J, Bigio EH, Mesulam M, Wang T, Sun L, Wang L, Lee AY, McGee WA, Chen X, Fushimi K, Zhu L, Wu JY. TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genet. 2019 May 17;15(5):e1007947. PubMed PMID: 31100073; PubMed Central PMCID: PMC6524796.

From the abstract: "Mutations in or dys-regulation of the TDP-43 gene have been associated with TDP-43 proteinopathy, a spectrum of neurodegenerative diseases including Frontotemporal Lobar Degeneration (FTLD) and Amyotrophic Lateral Sclerosis (ALS). The underlying molecular and cellular defects, however, remain unclear. Here, we report a systematic study combining analyses of patient brain samples with cellular and animal models for TDP-43 proteinopathy. ... Our work has not only uncovered a previously unknown role of LonP1 in regulating mitochondrial TDP-43 levels, but also advanced our understanding of the pathogenic mechanisms for TDP-43 proteinopathy. Our study suggests that blocking or reversing mitochondrial damage may provide a potential therapeutic approach to these devastating diseases."

Bogaert E, Boeynaems S, Kato M, Guo L, Caulfield TR, Steyaert J, Scheveneels W, Wilmans N, Haeck W, Hersmus N, Schymkowitz J, Rousseau F, Shorter J, Callaerts P, Robberecht W, Van Damme P, Van Den Bosch L. Molecular Dissection of FUS Points at Synergistic Effect of Low-Complexity Domains in Toxicity. Cell Rep. 2018 Jul 17;24(3):529-537.e4. PubMed PMID: 30021151; PubMed Central PMCID: PMC6077250.

Abstract: "RNA-binding protein aggregation is a pathological hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). To gain better insight into the molecular interactions underlying this process, we investigated FUS, which is mutated and aggregated in both ALS and FTLD. We generated a Drosophila model of FUS toxicity and identified a previously unrecognized synergistic effect between the N-terminal prion-like domain and the C-terminal arginine-rich domain to mediate toxicity. Although the prion-like domain is generally considered to mediate aggregation of FUS, we find that arginine residues in the C-terminal low-complexity domain are also required for maturation of FUS in cellular stress granules. These data highlight an important role for arginine-rich domains in the pathology of RNA-binding proteins."

Monday, December 2, 2019

Fly studies contribute to new report of an early-onset autosomal-recessive neurological disease

Wang J, Rousseau J, Kim E, Ehresmann S, Cheng YT, Duraine L, Zuo Z, Park YJ, Li-Kroeger D, Bi W, Wong LJ, Rosenfeld J, Gleeson J, Faqeih E, Alkuraya FS, Wierenga KJ, Chen J, Afenjar A, Nava C, Doummar D, Keren B, Juusola J, Grompe M, Bellen HJ, Campeau PM. Loss of Oxidation Resistance 1, OXR1, Is Associated with an Autosomal-Recessive Neurological Disease with Cerebellar Atrophy and Lysosomal Dysfunction. Am J Hum Genet. 2019 Nov 25. pii: S0002-9297(19)30423-9. PubMed PMID: 31785787.

Abstract: "We report an early-onset autosomal-recessive neurological disease with cerebellar atrophy and lysosomal dysfunction. We identified bi-allelic loss-of-function (LoF) variants in Oxidative Resistance 1 (OXR1) in five individuals from three families; these individuals presented with a history of severe global developmental delay, current intellectual disability, language delay, cerebellar atrophy, and seizures. While OXR1 is known to play a role in oxidative stress resistance, its molecular functions are not well established. OXR1 contains three conserved domains: LysM, GRAM, and TLDc. The gene encodes at least six transcripts, including some that only consist of the C-terminal TLDc domain. We utilized Drosophila to assess the phenotypes associated with loss of mustard (mtd), the fly homolog of OXR1. Strong LoF mutants exhibit late pupal lethality or pupal eclosion defects. Interestingly, although mtd encodes 26 transcripts, severe LoF and null mutations can be rescued by a single short human OXR1 cDNA that only contains the TLDc domain. Similar rescue is observed with the TLDc domain of NCOA7, another human homolog of mtd. Loss of mtd in neurons leads to massive cell loss, early death, and an accumulation of aberrant lysosomal structures, similar to what we observe in fibroblasts of affected individuals. Our data indicate that mtd and OXR1 are required for proper lysosomal function; this is consistent with observations that NCOA7 is required for lysosomal acidification."

Wangler et al describe "valuable platform to discover genes potentially involved in dominant disease that could affect peroxisomes"

Graves HK, Jangam S, Tan KL, Pignata A, Seto ES, Yamamoto S, Wangler MF. A Genetic Screen for Genes That Impact Peroxisomes in Drosophila Identifies Candidate Genes for Human Disease. G3 (Bethesda). 2019 Nov 25. pii: g3.400803.2019. PMID: 31767637.

From the abstract: "Peroxisomes are subcellular organelles that are essential for proper function of eukaryotic cells. In addition to being the sites of a variety of oxidative reactions, they are crucial regulators of lipid metabolism. Peroxisome loss or dysfunction leads to multi-system diseases in humans that strongly affect the nervous system. In order to identify previously unidentified genes and mechanisms that impact peroxisomes, we conducted a genetic screen ... Using the number, size and morphology of GFP tagged peroxisomes as a readout, we screened for mutations that altered peroxisomes ... we identified eighteen genes that cause increases in peroxisome number or altered morphology when mutated. We examined the human homologs of these genes and found that they are involved in a diverse array of cellular processes. Interestingly, the human homologs ... are good candidate genes particularly for dominant genetic disease. This in vivo screening approach for peroxisome defects allows identification of novel genes that impact peroxisomes ... and is a valuable platform to discover genes potentially involved in dominant disease that could affect peroxisomes."

Drosophila model of amyloid-beta aggregation used in study that helps inform mechanistic understanding related to Alzheimer's disease

Stapper ZA, Jahn TR. Changes in Glutathione Redox Potential Are Linked to Aβ(42)-Induced Neurotoxicity. Cell Rep. 2018 Aug 14;24(7):1696-1703. PMID: 30110626.

Abstract: "Glutathione is the major low-molecular weight thiol of eukaryotic cells. It is central to one of the two major NADPH-dependent reducing systems and is likely to play a role in combating oxidative stress, a process suggested to play a key role in Alzheimer's disease (AD). However, the nature and relevance of redox changes in the onset and progression of AD are still uncertain. Here, we combine genetically encoded redox sensors with our Drosophila models of amyloid-beta (Aβ) aggregation. We find that changes in glutathione redox potential (EGSH) closely correlate with disease onset and progression. We observe this redox imbalance specifically in neurons, but not in glia cells. EGSH changes and Aβ42 deposition are also accompanied by increased JNK stress signaling. Furthermore, pharmacologic and genetic manipulation of glutathione synthesis modulates Aβ42-mediated neurotoxicity, suggesting a causal relationship between disturbed glutathione redox homeostasis and early AD pathology."

Drosophila model used to explore mechanisms related to Alzheimer's disease

Zhuang L, Peng F, Huang Y, Li W, Huang J, Chu Y, Ren P, Sun Y, Zhang Y, Xue E, Guo X, Shen X, Xue L. CHIP modulates APP-induced autophagy-dependent pathological symptoms in Drosophila. Aging Cell. 2019 Nov 28:e13070. PubMed PMID: 31777182.

Abstract: "Dysregulation of autophagy is associated with the neurodegenerative processes in Alzheimer's disease (AD), yet it remains controversial whether autophagy is a cause or consequence of AD. We have previously expressed the full-length human APP in Drosophila and established a fly AD model that exhibits multiple AD-like symptoms. Here we report that depletion of CHIP effectively palliated APP-induced pathological symptoms, including morphological, behavioral, and cognitive defects. Mechanistically, CHIP is required for APP-induced autophagy dysfunction, which promotes Aβ production via increased expression of BACE and Psn. Our findings suggest that aberrant autophagy is not only a consequence of abnormal APP activity, but also contributes to dysregulated APP metabolism and subsequent AD pathogenesis."

Drosophila model reveals mechanistic insights into the human disease-associated gene PNPLA6 and disease-associated variants

Sunderhaus ER, Law AD, Kretzschmar D. Disease-Associated PNPLA6 Mutations Maintain Partial Functions When Analyzed in Drosophila. Front Neurosci. 2019 Nov 6;13:1207. PMID:
31780887; PMCID: PMC6852622.

From the abstract: "Mutations in patatin-like phospholipase domain-containing protein 6 (PNPLA6) have been linked with a number of inherited diseases with clinical symptoms that include spastic paraplegia, ataxia, and chorioretinal dystrophy. PNPLA6 is an evolutionary conserved protein whose ortholog in Drosophila is Swiss-Cheese (SWS). ... disease-causing point mutations are found in homozygous patients, with some localized in the phospholipase domain while others are in a region that contains several cNMP binding sites. To investigate how different mutations affect the function of PNPLA6 in an in vivo model, we expressed them in the Drosophila sws1 null mutant. Expressing wild-type PNPLA6 suppressed the locomotion and degenerative phenotypes in sws 1 and restored lipid levels, confirming that the human protein can replace fly SWS. In contrast, none of the mutant proteins restored lipid levels, although they suppressed the behavioral and degenerative phenotypes, at least in early stages. These results show that these mutant forms of PNPLA6 retain some biological function, indicating that disruption of lipid homeostasis is only part of the pathogenic mechanism. ..."

Drosophila model of Spinocerebellar Ataxia type 3 used as part of an effort to identify drug targets for treatment of this ataxia

Ashraf NS, Sutton JR, Yang Y, Ranxhi B, Libohova K, Shaw ED, Barget AJ, Todi SV, Paulson HL, do Carmo Costa M. Druggable genome screen identifies new regulators of the abundance and toxicity of ATXN3, the Spinocerebellar Ataxia type 3 disease protein. Neurobiol Dis. 2019 Nov 26:104697. PMID: 31783119.

From the abstract: "Spinocerebellar Ataxia type 3 (SCA3, also known as Machado-Joseph disease) is a neurodegenerative disorder ... No preventive treatment is yet available for SCA3. ... Here, we sought to identify genes that modulate ATXN3 levels as potential therapeutic targets in this fatal disorder. We screened a collection of siRNAs targeting 2742 druggable human genes using a cell-based assay ... Among the 33 genes confirmed in secondary assays, 15 were validated in an independent cell model as modulators of pathogenic ATXN3 protein levels. Ten of these genes were then assessed in a Drosophila model of SCA3, and one was confirmed as a key modulator of physiological ATXN3 abundance in SCA3 neuronal progenitor cells. ... Among identified pathways highlighted by this screen, the FBXL3/SCF axis represents a novel molecular pathway that regulates physiological levels of ATXN3 protein."

Review article highlights relevance of Drosophila for study of human disorders of glycosylation

Nishihara S. Functional analysis of glycosylation using Drosophila melanogaster. Glycoconj J. 2019 Nov 26. doi: 10.1007/s10719-019-09892-0. PMID: 31773367.

From the abstract: "The glycosylation of proteins and lipids has various essential roles in a diverse range of biological processes ... detailed studies with Drosophila mutants of glycosyltransferases, nucleotide sugar transporters, and glycosidases revealed novel functions of N-linked glycans, glycosaminoglycans, glycolipids, and O-linked glycans including mucin type O-glycan, O-Fuc, O-Man, and O-GlcNAc. As many of these functions are common between Drosophila and humans, these mutants represent good models for human disease. In this review, recent studies of glycan functions using Drosophila are summarized."

Drosophila study suggests additional molecular function for a gene related to a human disease gene associated with glycogen storage disorder type IV

Huynh N, Ou Q, Cox P, Lill R, King-Jones K. Glycogen branching enzyme controls cellular iron homeostasis via Iron Regulatory Protein 1 and mitoNEET. Nat Commun. 2019 Nov 29;10(1):5463. PMID: 31784520.

Abstract: "Iron Regulatory Protein 1 (IRP1) is a bifunctional cytosolic iron sensor. When iron levels are normal, IRP1 harbours an iron-sulphur cluster (holo-IRP1), an enzyme with aconitase activity. When iron levels fall, IRP1 loses the cluster (apo-IRP1) and binds to iron-responsive elements (IREs) in messenger RNAs (mRNAs) encoding proteins involved in cellular iron uptake, distribution, and storage. Here we show that mutations in the Drosophila 1,4-Alpha-Glucan Branching Enzyme (AGBE) gene cause porphyria. AGBE was hitherto only linked to glycogen metabolism and a fatal human disorder known as glycogen storage disease type IV. AGBE binds specifically to holo-IRP1 and to mitoNEET, a protein capable of repairing IRP1 iron-sulphur clusters. This interaction ensures nuclear translocation of holo-IRP1 and downregulation of iron-dependent processes, demonstrating that holo-IRP1 functions not just as an aconitase, but throttles target gene expression in anticipation of declining iron requirements."