Oláhová M, Yoon WH, Thompson K, Jangam S, Fernandez L, Davidson JM, Kyle JE, Grove ME, Fisk DG, Kohler JN, Holmes M, Dries AM, Huang Y, Zhao C, Contrepois K, Zappala Z, Frésard L, Waggott D, Zink EM, Kim YM, Heyman HM, Stratton KG, Webb-Robertson BM; Undiagnosed Diseases Network, Snyder M, Merker JD, Montgomery SB, Fisher PG, Feichtinger RG, Mayr JA, Hall J, Barbosa IA, Simpson MA, Deshpande C, Waters KM, Koeller DM, Metz TO, Morris AA, Schelley S, Cowan T, Friederich MW, McFarland R, Van Hove JLK, Enns GM, Yamamoto S, Ashley EA, Wangler MF, Taylor RW, Bellen HJ, Bernstein JA, Wheeler MT. Biallelic Mutations in ATP5F1D, which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder. Am J Hum Genet. 2018 Feb 16. pii: S0002-9297(18)30042-9. PMID: 29478781.
From the abstract: "... Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. ... Knockdown of Drosophila ATPsynδ, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation."
No comments:
Post a Comment