Abstract: "Vibrio cholerae colonizes the human terminal ileum to cause cholera, and the arthropod intestine and exoskeleton to persist in the aquatic environment. Attachment to these surfaces is regulated by the bacterial quorum-sensing signal transduction cascade, which allows bacteria to assess the density of microbial neighbours. Intestinal colonization with V. cholerae results in expenditure of host lipid stores in the model arthropod Drosophila melanogaster. Here we report that activation of quorum sensing in the Drosophila intestine retards this process by repressing V. cholerae succinate uptake. Increased host access to intestinal succinate mitigates infection-induced lipid wasting to extend survival of V. cholerae-infected flies. Therefore, quorum sensing promotes a more favourable interaction between V. cholerae and an arthropod host by reducing the nutritional burden of intestinal colonization."
Asking yourself, "Um, what?" Here's an interpretation by your blog author:
Bacteria called Vibrio cholerae cause cholera in humans. When they're not doing that, they lurk inside the guts (and on the outsides) of arthropods that live in the water. This study uses fruit flies as a lab-friendly system in which to look at a specific aspect of the interaction between a host arthropod's gut and Vibrio bacteria. Turns out that confusing the bacteria about how many of themselves are around stops them from taking up a molecule called succinate, leaving more of the succinate around for the fly. With more succinate available, the fly uses up less of its fat reserves than it usually would when infected. This helps the infected fly survive longer.
No comments:
Post a Comment