Kang KH, Han JE, Hong YB, Nam SH, Choi BO, Koh H. Human HSPB1 mutation recapitulates features of distal hereditary motor neuropathy (dHMN) in Drosophila. Biochem Biophys Res Commun. 2019 Oct 17. pii: S0006-291X(19)32012-1. PubMed PMID: 31630804.
Abstract: "Distal hereditary motor neuropathies (dHMN) are a group of inherited peripheral nerve disorders characterized by length-dependent motor neuron weakness and subsequent muscle atrophy. Missense mutations in the gene encoding small heat shock protein HSPB1 (HSP27) have been associated with hereditary neuropathies including dHMN. HSPB1 is a member of the small heat shock protein (sHSP) family characterized by a highly conserved α-crystallin domain that is critical to their chaperone activity. In this study, we modeled HSPB1 mutant-induced neuropathies in Drosophila using a human HSPB1S135F mutant that has a missense mutation in its α-crystallin domain. Overexpression of the HSPB1 mutant produced no significant defect in the Drosophila development, however, a partial reduction in the life span was observed. Further, the HSPB1 mutant gene induced an obvious loss of motor activity when expressed in Drosophila neurons. Moreover, suppression of histone deacetylase 6 (HDAC6) expression, which has critical roles in HSPB1 mutant-induced axonal defects, successfully rescued the motor defects in the HSPB1 mutant Drosophila model."
No comments:
Post a Comment