Wednesday, October 26, 2016

Fly, mouse, and human cell models of Duchenne muscular dystrophy used to evaluate exon skipping as a potential therapeutic strategy

Gao QQ, Wyatt E, Goldstein JA, LoPresti P, Castillo LM, Gazda A, Petrossian N, Earley JU, Hadhazy M, Barefield DY, Demonbreun AR, Bönnemann C, Wolf M, McNally EM. Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping. J Clin Invest. 2015 Nov 2;125(11):4186-95. PMID: 26457733; PMCID: PMC4639981.

From the abstract: "Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. ... Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. ... We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations."

No comments:

Post a Comment